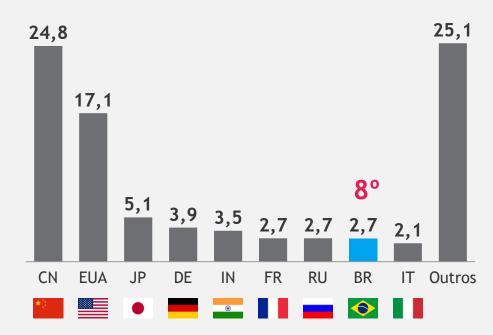


O caminho da descarbonização do setor automotivo no Brasil

10 DE AGOSTO DE 2021


Contexto atual

Brasil está entre os 10 maiores mercados automotivos

Venda de veículos leves em 2019 (milhões)

Venda de veículos pesados em 2019 (mil)

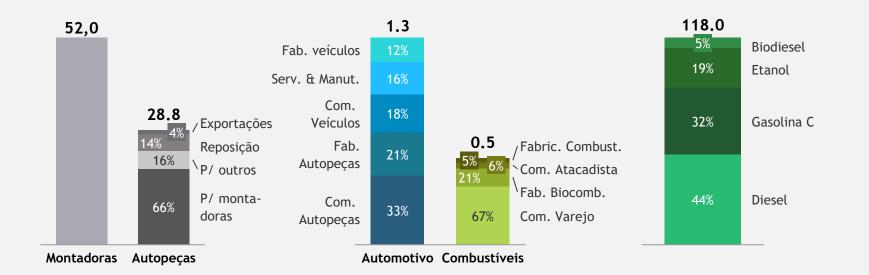
Nota: Veículos leves incluem veículos de passageiros e veículos comerciais leves. Veículos pesados incluem médios (6-15T), pesados (>15T) e Ônibus. Fonte: IHS

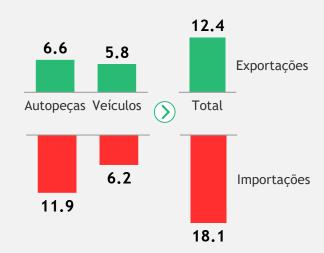
Contribuição da indústria e da cadeia automotiva para a economia brasileira

Faturamento direto de >USD 80 bilhões

Geração de 1.8 milhão de empregos

Consumo de 118 bilhões de L combustível

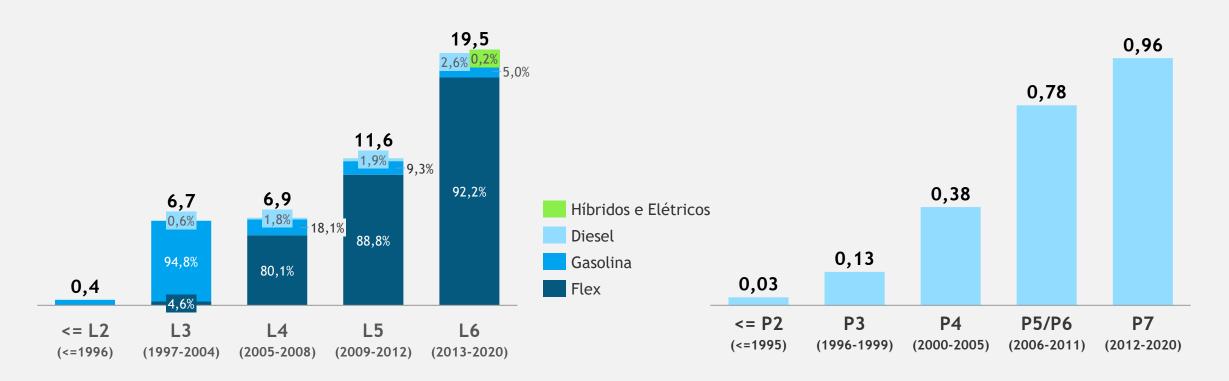

Papel expressivo na balança comercial


Faturamento líquido (US\$ bilhões, 2019)

Empregos formais¹ (milhões, 2019)

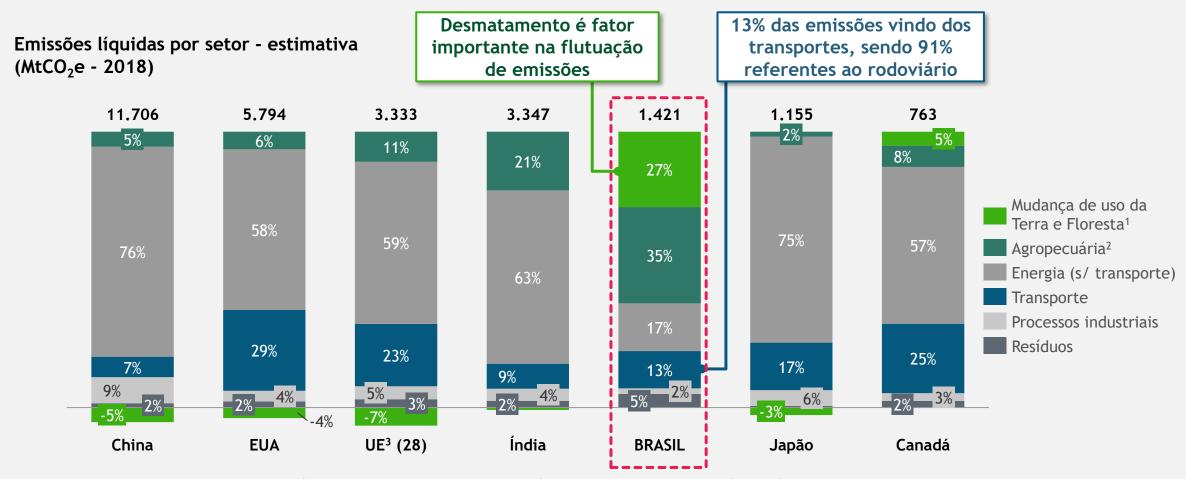
Consumo de combustíveis (bilhões de litros, 2019)

Comércio global de mercadorias² (USD bilhões, 2019)


Nota: Valores referentes a 2019. 1. Inclui empregos na fabricação de veículos e autopeças relacionadas a MCI, e serviço & manutenção. 2. Setor automobilístico representou 6% das exportações e 10% das importações do Brasil em 2019. Fontes: Anfavea, Sindipecas, RAIS, ANP, Atlas Global de Comércio, IHS Markit, Ministério da Economia

Frota brasileira por fase do Proconve

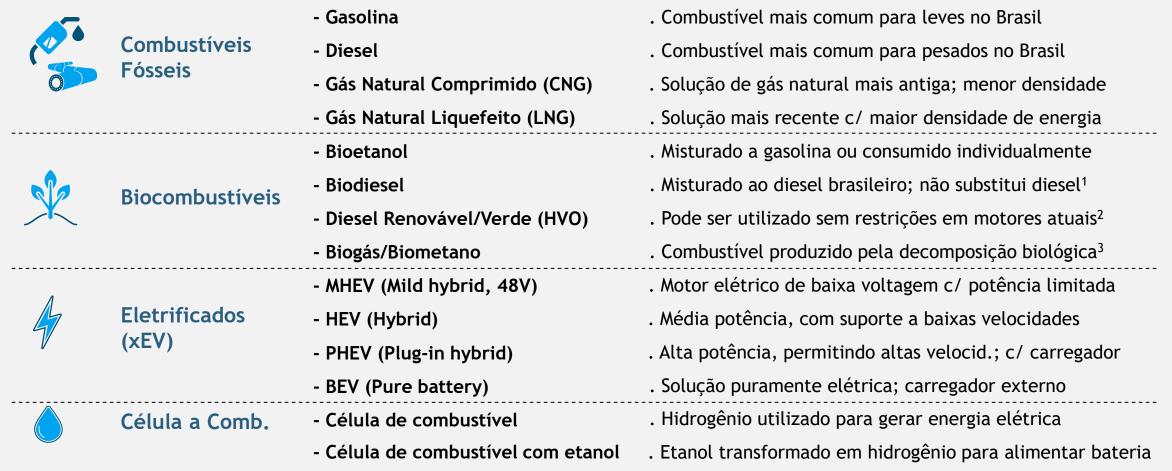
Veículos leves | Frota em 2020 ~45 milhões


Veículos pesados | Frota de 2020 ~2.0 milhões

Nota: Leves incluem veículos de passageiros e veículos comerciais leves; Veículos pesados incluem MDT, HDT e Ônibus Fonte: IHS Markit; Anfavea; Sindipeças

Emissões de CO₂ e participação do setor de transporte

^{1.} Considera captura e liberação de CO₂ atmosférico por mudanças no uso do solo (ex. área florestal transformada em área agrícola). Valores negativos podem existir por mudanças no uso do solo que capturem CO₂ atmosférico. 2. Inclui emissões de gado e relacionadas a solos agrícolas (fertilizantes, estrume, etc...) 3. Inclui Reino Unido na UE. Fonte: CAIT, SEEG



Influências nas Rotas Tecnológicas

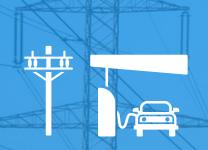
Em um contexto de descarbonização, diversas rotas tecnológicas competem por espaço a médio-longo prazo

Não Exaustivo

Diversas forças influenciando a evolução das rotas tecnológicas

Regulação e Incentivos

Posicionamento e estímulos governamentais


Investidores e Clientes

Foco de investidores e clientes em ESG

Indústria e Tecnologia

Viabilidade tecnológica e desenvolvimento da indústria

Infraestrutura

Disponibilidade de Infraestrutura de produção e distribuição

TCO

Custo Total de Propriedade do veículo

Diversas forças influenciando a evolução das rotas tecnológicas

Regulação e Incentivos

Posicionamento e estímulos governamentais

Investidores e Clientes

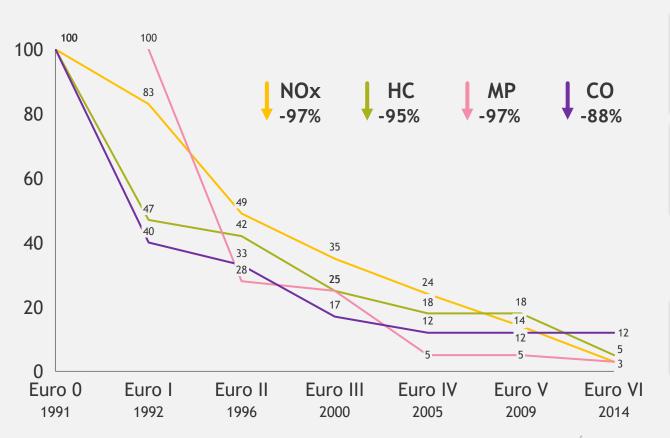
Foco de investidores e clientes em ESG

Indústria e Tecnologia

Viabilidade tecnológica e desenvolvimento da indústria

Infraestrutura

Disponibilidade de Infraestrutura de produção e distribuição


TCO

Custo Total de Propriedade do veículo

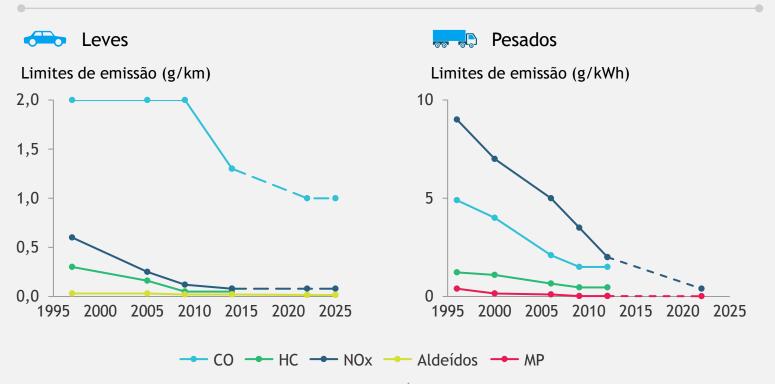
Regulações internacionais estão cada vez mais exigentes, colocando em questão o futuro dos motores a combustão

Regulação europeia vem impondo limites cada vez mais rígidos

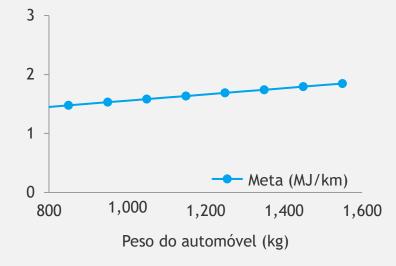
Proposta da Euro VII causou reações controversas

France says EU push for Normas europeias deveriam tougher emissions rules incentivar e não destruir nossa goes too far -Le Figaro indústria (automotiva) Bruno Le Maire - Ministro da Fazenda EU environmental requirements for cars must be "feasible" – German transport minister Clean Energy Wire Deve-se ser ousado nas metas, mas manter em mente o princípio do quê é técnicamente possível Andreas Scheuer - Ministro dos Transportes German engineers warn new EU emission rules could spell end of combustion engine Clean Energy Wire Planos atuais da regulação representam um ban de MCIs pela "porta dos fundos" [...] um fim abrupto aos MCIs VDMA (Federação de engenharia)

Nota: CO = Monóxido de carbono, MP = Material Particulado, HC = Hidrocarbonetos, NOx = Óxidos de Nitrogênio Fonte: VDA, Dieselnet, European Commission



Regulação brasileira segue referências internacionais, mas sem vínculo direto com gases de efeito estufa


Exemplos

Proconve: Redução progressiva dos limites de poluentes em diversas fases

Rota 2030: Controle dos níveis de eficiência energética

Exemplo: Meta de eficiência energética para automóveis (1.564 kg) (MJ/km) a partir de out/2022

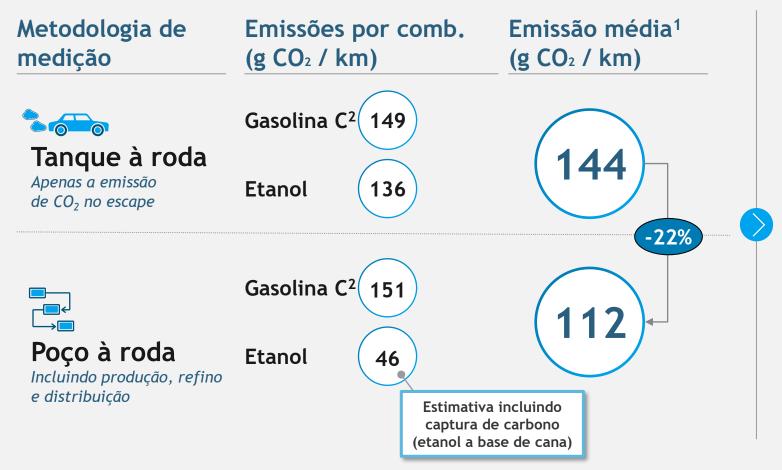
Nota: CO = Monóxido de carbono, HC = Hidrocarbonetos, NOx = Óxidos de Nitrogênio, MP = Material Particulado Fonte: Anfavea

Em paralelo à regulação das emissões, diversas rotas são incentivadas por políticas públicas

Exemplos

Política		Rota Incentivada	Lançamento	Liderança
RenovaBio	Política Nacional de Biocombustíveis (Renovabio)	Biocombustíveis (ex. Etanol, Biodiesel, etc.)	2016	MME
BIODIESEL COMMUNITY SOCIAL	Programa Nacional de Produção e Uso do Biodiesel (PNPB)	Biodiesel	2004	MAPA
NOVO MERCADO DE GÁS	Novo Mercado do Gás	Gás Natural / Biogás	2019	MME
	Descontos em Tarifas de Importação para xEVs	Elétricos	2015	Ministério da Economia
6	Desconto em IPI para xEVs	Elétricos	2020	MDIC
•	Desconto em IPVA para xEVs	Elétricos	-	Governos Estaduais
COMBUSTÍVEL FUURO	Programa Combustível do Futuro	Eixo sobre ciclo Otto, Diesel, Hidrogênio, etc.	2021	MME
	Programa Nacional do Hidrogênio	Hidrogênio	Em elaboração	MME

Referências externas apontam necessidade de foco em objetivo específico e estímulos para desenvolvimento de novas rotas


	* * * * * * *		*:	
	Europa	EUA	China	Índia
Objetivo	Controle de emissões de gases efeito estufa	Controle de emissões de gases efeito estufa	Controle de emissões Liderança tecnológica	Poluição urbana Segurança energética Exportações ²
Rota priorizada¹	Eletrificação	Eletrificação	Eletrificação	Eletrificação (2W) Gás/Biocomb. (curto prazo em 4W)
Exemplos de regulação e estímulos	Emissão máxima de veículos 95 g CO ₂ /km	Número mínimo de ZEVs (veículos sem emissão) vendidos por ano por OEMs	Implementação do China VI (equivalente ao Euro VI)	Implementação do BS VI para veículos de combustão interna
	Abatimento de até € 5 K a 6 K do valor de veículos elétricos	Até US\$ 7,5 K em crédito de imposto para veículos elétricos	Programa de crédito p/ EVs vem substituindo subsídios no valor do veículo ³	Programa FAME ⁴ de subsídios

Nota: ZEV - Zero Emission Vehicle; 2W = veículos de 2 rodas (motos e scooters); 4W = veículos de 4 rodas (passageiros) 1. Outras rotas tem recebido estímulos nessas regiões; 2. Produção indiana deve se adequar a necessidade de eletrificação observada em outras partes do mundo; 3. Subsídios

Metodologia de medição e reporte de emissões será importante na definição da rota brasileira

Presença de Etanol na matriz brasileira gera variação na aferição de emissões de CO₂, a depender da metodologia de medição

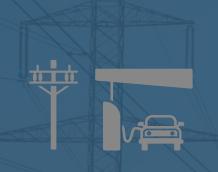
^{1.} Considerando proporção do consumo nacional de gasolina e etanol de 2019 (63% gasolina, 27% etanol)

^{2.} Valores de gasolina A de 153 g/km tanque à roda e ~185 g/km poço a roda

Diversas forças influenciando a evolução das rotas tecnológicas

Regulação e Incentivos

Posicionamento e estímulos governamentais


Investidores e Clientes

Foco de investidores e clientes em ESG

Indústria e Tecnologia

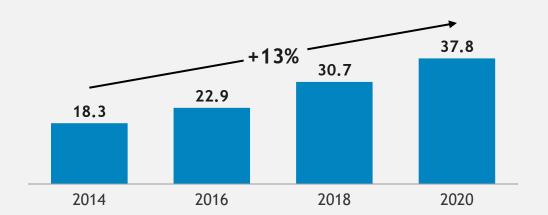
Viabilidade tecnológica e desenvolvimento da indústria

Infraestrutura

Disponibilidade de Infraestrutura de produção e distribuição

TCO

Custo Total de Propriedade do veículo

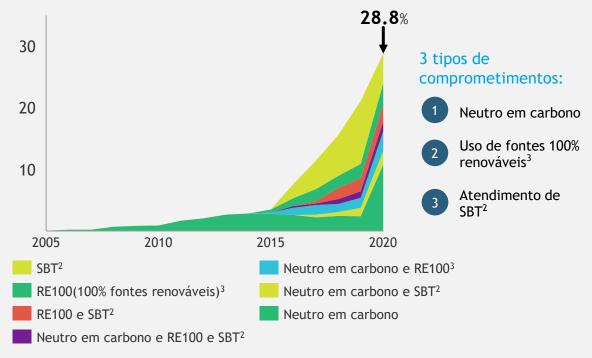

Investimentos em fundos sustentáveis têm crescido de forma acelerada

Patrimônio investido em fundos sustentáveis crescem globalmente

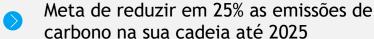
Fundos ESG ainda são pequena parcela dos investimentos mas crescem rapidamente

Patrimônio Líquido de Fundos ESG no mundo (US\$ trilhões)

Patrimônio Líquido de Fundos de Investimento no Brasil (R\$ bilhões)



Empresas brasileiras seguem tendência global e passam a anunciar metas para redução de emissões


Globalmente, empresas estão cada vez mais anunciando metas para redução de emissões

Metas ambiciosas para redução de emissões - alguns exemplos

Porcentagem de empresas na Fortune 500 Global¹

Zerar o balanço de suas emissões de gases causadores do efeito estufa até 2040

Ser carbono neutro até 2025, com possibilidade de atingi-lo em 2021 (BR)

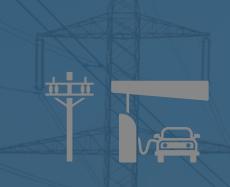
Plataforma totalmente elétrica e sem emissão de carbono até 2040

^{1.} Dados de 2020. 2. SBT (Science-Based Targets) Metas de redução de emissão baseada em ciência 3. RE100 (Renewable Electricity 100%): Metas para uso de eletricidade de fontes renováveis. Fonte: Notícias; Deeds Not Words: The Growth of Climate Action in the Corporate World, Setembro 2019 - Natural Capital Partners

Diversas forças influenciando a evolução das rotas tecnológicas

Regulação e Incentivos

Posicionamento e estímulos governamentais


Investidores e Clientes

Foco de investidores e clientes em ESG

Indústria e Tecnologia

Viabilidade tecnológica e desenvolvimento da indústria

Infraestrutura

Disponibilidade de Infraestrutura de produção e distribuição

TCO

Custo Total de Propriedade do veículo

Diversas rotas alternativas têm sido avaliadas no Brasil

Exemplos

Veículos leves

Veículos pesados

Biocombustíveis

raízen

"Licenciamento da tecnologia de segunda geração pode ser essencial para etanol ser commodity global" - Jun.21

"Scania lança caminhões e ônibus rodoviários movidos a GNV e/ou biometano no Brasil" - Fev.21

"Bosch estuda investimentos em HVO para ônibus e caminhões no Brasil" - Dez. 19

Elétricos

"Montadoras anunciam novos modelos de carros elétricos que serão lançados no Brasil" - Abr.21

"Empresas preparam-se para a produção de caminhões elétricos, caminhando em direção à eletrificação de seu portfólio de veículos comerciais" - Fev. 21

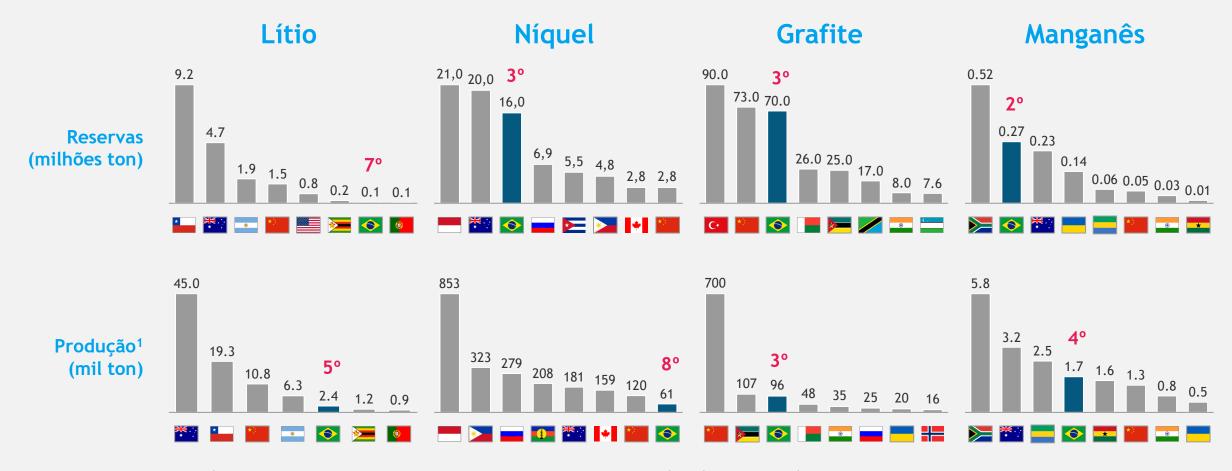
"Volvo e Daimler criam parceria para desenvolvimento,

produção e comercialização de sistemas de célula a

Célula a Combustivel

"Empresas apostam no desenvolvimento de tecnologia de célula a combustível alimentada por etanol" - Fev.21

combustivel" - Mar. 21



Fonte: Notícias; Websites de empresas

Brasil e países vizinhos possuem enormes reservas de matérias-primas utilizadas na produção de baterias ...

^{1.} Dados de 2019. Nota: Lítio pode estar presente no catodo da bateria e como sal dissolvido no eletrólito líquido. Grafite é o principal material utilizado em anodos de baterias de íon de lítio. Níquel, manganês e cobalto são os principais materiais utilizados no catodo de baterias de EVs, em diferentes proporções. Cobalto foi produzido no Brasil pela Votorantim até 2016, quando unidades produtivas foram paralisadas. Em 2015, Brasil produziu 3.8 k ton de cobalto e possuía 70 k ton de reservas. Fonte: Statista; Mineral Commodity Summaries 2021; InnoEnergy: Análise BCG

... porém produção local de xEVs exige investimentos bilionários

Exemplos

Pesquisa & **Desenvolvimento**

Baterias

Veículos

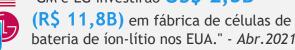
"investe US\$ 185M (R\$ 947M) em centro de pesquisa e desenvolvimento para baterias de EVs." - Abr. 2021

"Nissan investirá mais de US\$1,8B

(R\$ 9,2B) em novas fábricas de baterias de EVs no Japão e UK." -Mai. 2021

"GM anunciou que investirá US\$ 1B

(R\$ 5B) em uma fábrica de veículos elétricos no México." - Abr. 2021


"Planeja investir US\$ 11,8B

(R\$ 60,4B) até 2025 para desenvolver e fabricar veículos híbridos e elétricos." - Nov. 2017

"GM e LG investirão US\$ 2,3B

"GM anunciou investimento de USS

2,2B (**R**\$ **11,3B**) em fábrica para produção de EVs." - Abr. 2021

"investirá US\$ 11B (R\$ 56B) em 10 novos modelos totalmente elétricos até 2022." - Mar. 2017

Nota: Considerando-se dolár a R\$5.12 e euro a R\$6.19. Fonte: Notícias e website das empresas

"Anúncios de fábricas para produção de células de íons de lítio na Europa estão

entre € 900 M a € 2 B (R\$ 6B a 12B)." - Dez.2019

"Mercedes planeja investir US\$ 1B (R\$ 5B) em fábrica para SUVs elétricos e baterias no Alabama (EUA)." - Set.2017

Diversas forças influenciando a evolução das rotas tecnológicas

Regulação e Incentivos

Posicionamento e estímulos governamentais

Investidores e Clientes

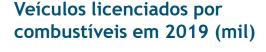
Foco de investidores e clientes em ESG

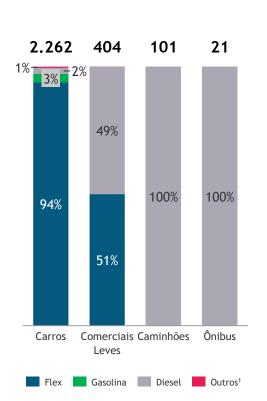
Indústria e Tecnologia

Viabilidade tecnológica e desenvolvimento da indústria

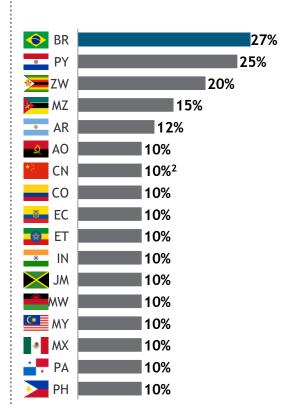
Infraestrutura

Disponibilidade de Infraestrutura de produção e distribuição

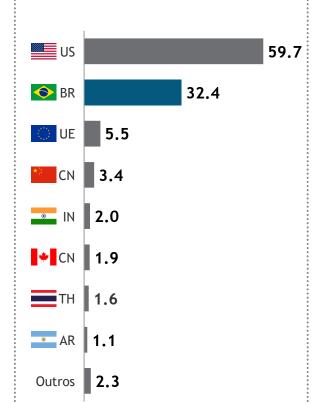


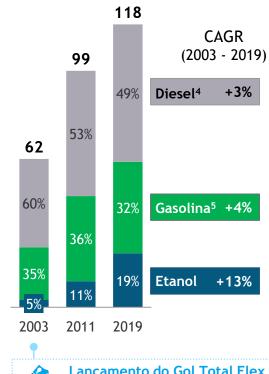

TCO

Custo Total de Propriedade do veículo



Grande disponibilidade de carros flex e produção de etanol permitem maior relevância do combustível na matriz brasileira vs outros países




Quantidade de etanol exigida na gasolina (%)

Produção mundial de etanol em 2019³ (bilhões de litros)

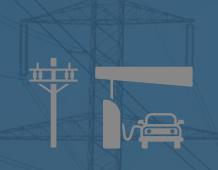
Venda de combustíveis por distribuidores (milhões de m³)

^{1. &}quot;Outros" inclui Elétricos, Híbridos e uma porção insignificante de veículos que só utilizam etanol. 2. Em 15 regiões. 3. Produção mundial de etanol de 109.9 Bilhões de litros em 2019. 4. Inclui biodiesel. 5. Gasolina C Nota: EUA não possui uma exigência nacional de quantidade de etanol na gasolina - porém na média, gasolina consumida possui 10% de etanol em volume. Fonte: Anfavea; ANP; Renewables 2020 - Global Status Report; Caderno Setorial ETENE 2020

Diversas forças influenciando a evolução das rotas tecnológicas

Regulação e Incentivos

Posicionamento e estímulos governamentais


Investidores e Clientes

Foco de investidores e clientes em ESG

Indústria & Tecnologia

Viabilidade tecnológica e desenvolvimento da indústria

Infraestrutura

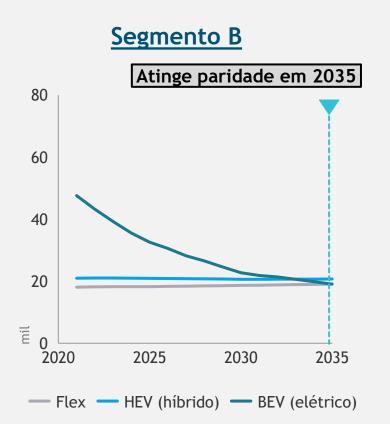
Disponibilidade de Infraestrutura de produção e distribuição

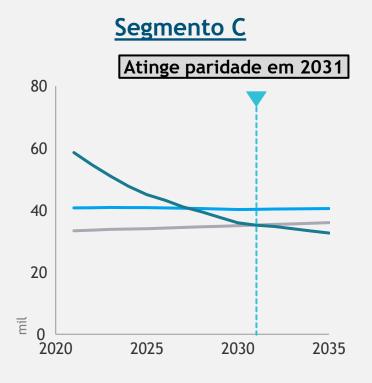
TCO

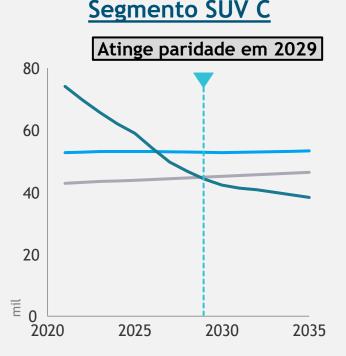
Custo Total de Propriedade do veículo

Principais fatores que influenciam na análise de TCO

Dimensão	Abordagem		
Custo de aquisição	 Custo de aquisição atual baseado no preço de mercado/referências externas Projeções seguem referências globais 		
custo de financiamento	Custo de financiamento com base em taxas médias praticadas no mercado		
Custo de substituição da bateria	Custo estimado para troca de bateria por uso e desgaste		
Custo de combustível	 Baseado nas eficiências, autonomias, preços dos combustíveis e quilometragem Projeções de melhoria de performance MCI e xEV seguem referências globais 		
Custo de manutenção	 Custo para MCI e veículos flex com base em referências de mercado Custos para HEVs e BEVs estimados a partir de referências internacionais 		
i IPVA	Custo de IPVA no estado de São Paulo utilizado como referência		
Valor residual	Valor residual avaliado com base em referências de mercado e na missão do veículo		

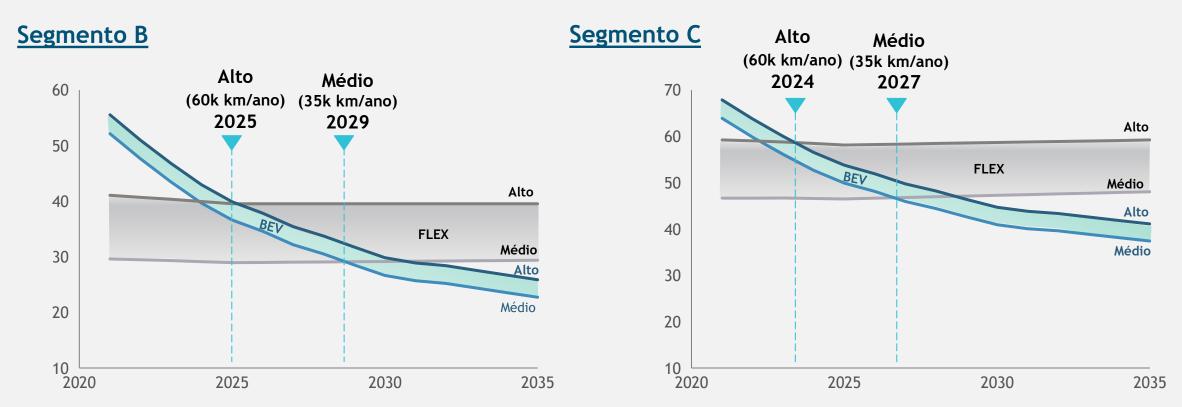





Veículos leves | Para uso pessoal, paridade de elétricos atingida a partir de ~2030, variando conforme segmento

Custo total de propriedade para veículos leves de passeio (12 mil km/ano - R\$/ano)

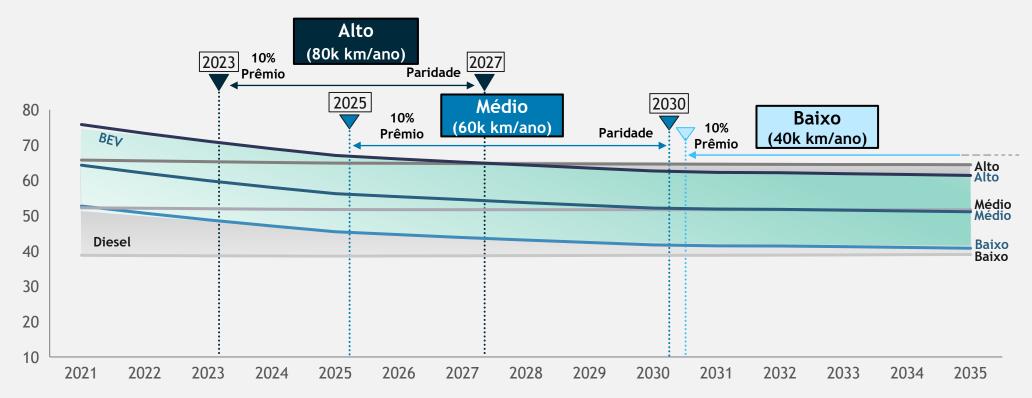
ESTIMATIVAS



Para missões específicas como transporte por aplicativo, paridade de elétricos pode ser atingida na metade desta década

ESTIMATIVAS

Custo total de propriedade para veículos leves profissionais, por nível de uso (R\$ mil/ano)

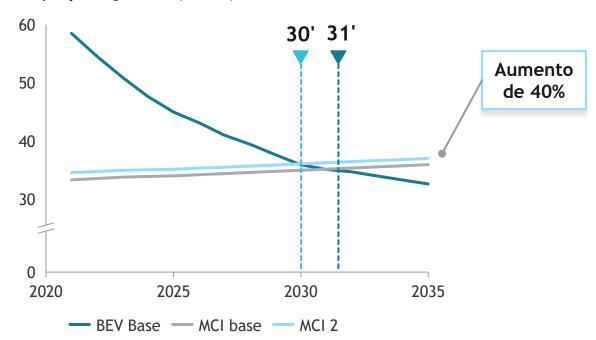


Caminhões leves urbanos | Disposição para pagar prêmio pode antecipar transição, particularmente em casos de uso intenso

ESTIMATIVAS

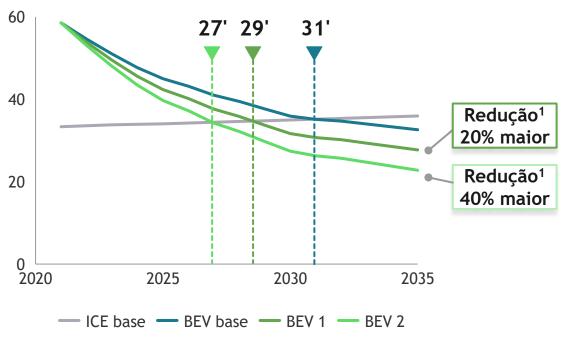
Custo total de propriedade por 11 anos para caminhões urbanos, por nível de uso (R\$ mil/ano)

Nota: Inclui custo de financiamento, aquisição, substituição de bateria para BEV, combustíveis, manutenção, IPVA e valor residual. Custo de aquisição do veículo a Diesel sobe no período, porém é compensado pela melhoria de eficiência do motor; BEV - Batery Electric Vehicle Fonte: Anfavea, Inmetro, KBB, sites de montadoras, FIPE, IHS Markit, ANP, ANEEL, projeções globais BCG, Bacen, Focus, Bank of America, Análise e estimativas BCG



Aumento no preço do combustível ou redução mais acelerada do custo de baterias podem acelerar adoção de xEVs

Exemplos veículos leves


Aumento do preço da gasolina em 40% pode antecipar paridade em um ano

TCO do segmento C passeio (12 mil km/ano) com diferentes valores de preço da gasolina (R\$ mil)

Queda mais acelerada do custo de powertrain elétrico pode antecipar paridade de TCO significativamente

TCO do segmento C passeio (12 mil km/ano) com diferentes reduções do custo do powertrain elétrico (R\$ mil)

Cenários de desenvolvimento

Estudo BCG: O caminho da descarbonização do setor automotivo no Brasil

Contexto da indústria no Brasil

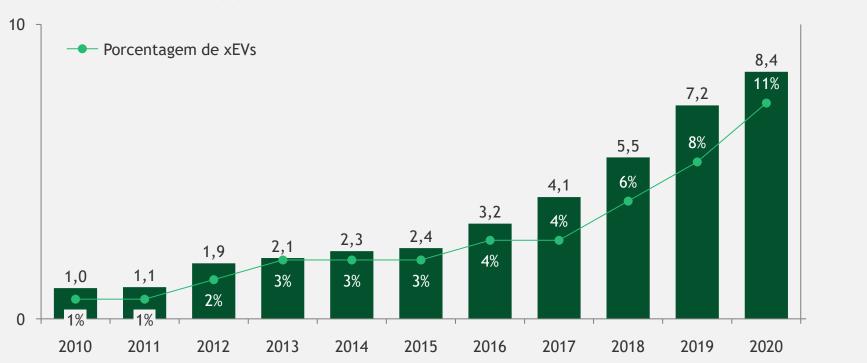
Forças que influenciam a evolução das rotas tecnológicas

- Regulação
- Custo e tecnologia
- Infraestrutura
- •

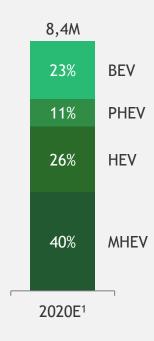
Cenários de desenvolvimento

Quais são possíveis cenários futuros de motorização no Brasil?

Quais implicações e externalidades em cada cenário?


Tendências internacionais e estudos de caso

Referências e aprendizados de outros mercados



Globalmente a venda de veículos eletrificados (xEVs) vem crescendo de forma relevante

Produção global de veículos eletrificados (M)

Participação de xEVs por tipo (%)

Eletrificação está sendo impulsionada por diversas forças

Regulação cada vez mais restrita

Padrões de emissão de CO₂ cada vez mais rigorosos em diversas geografias, incentivos para venda de veículos elétricos

Custos da bateria caindo mais rápido do que o previsto

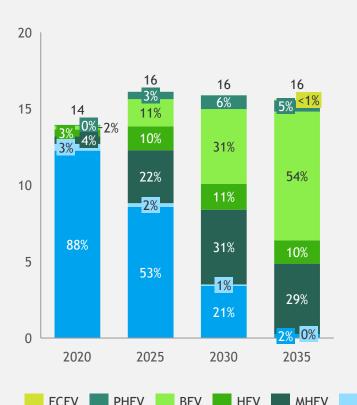
Avanços tecnológicos e ganhos de escala contribuindo para redução nos custos de bateria

Montadoras globais expandindo oferta de xEVs

Anúncios de 400+ modelos híbridos elétricos e plug-in até 2025

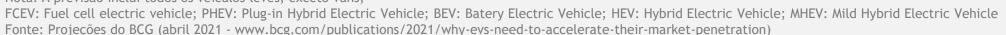
4 Pressão de investidores e clientes

Clientes, investidores, parceiros e sociedade exercendo pressão para a descarbonização a fim de atender às exigências para alcançar um mundo net-zero até 2050



EUA, Europa e China lideram adoção de veículos eletrificados

Projeções de volume da UE (unidades M)



Projeções de volume da China (unidades M)

Regulação atual sem vínculo direto com emissão de CO₂ e outros gases de efeito estufa, além de políticas e incentivos atuando em múltiplas frentes

Paridade de custos de veículos elétricos vs. combustão interna mais distante vs. mercados mais avançados, devido a fatores como custo de aquisição, custo de combustível e perfil de uso

Portfolio mais focado nos segmentos de menor valor agregado (ex. compactos), excesso de capacidade instalada e necessidade de elevados investimentos para produção local de xEVs

Ampla disponiblidade e infra-estrutura existente de biocombustíveis no país, que possuem um perfil de emissão de CO₂ mais favorável que combustíveis fósseis

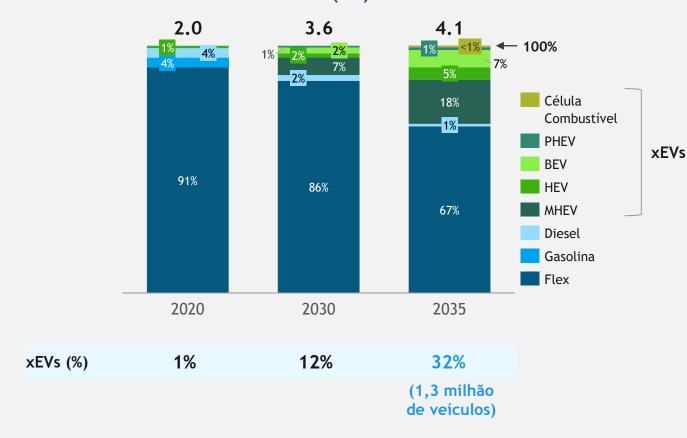
A interação das forças pode moldar diferentes rotas de descarbonização no Brasil nos próximos 10-15 anos

1. Cenário inercial

Neste cenário, motores a combustão, sustentam penetração ainda elevada nos próximos 15 anos, em particular nos segmentos de volume

Eletrificação voltada para atender segmentos específicos, requisitos de emissões e demandas de clientes corporativos, levando a um baixo nível de eletrificação dos segmentos de maior volume

1. Cenário inercial


Neste cenário, motores a combustão, sustentam penetração ainda elevada nos próximos 15 anos, em particular nos segmentos de volume

Eletrificação voltada para atender segmentos específicos, requisitos de emissões e demandas de clientes corporativos, levando a um baixo nível de eletrificação dos segmentos de maior volume

Mix de vendas anual - milhões de veículos

ESTIMATIVAS

Inercial (L1)

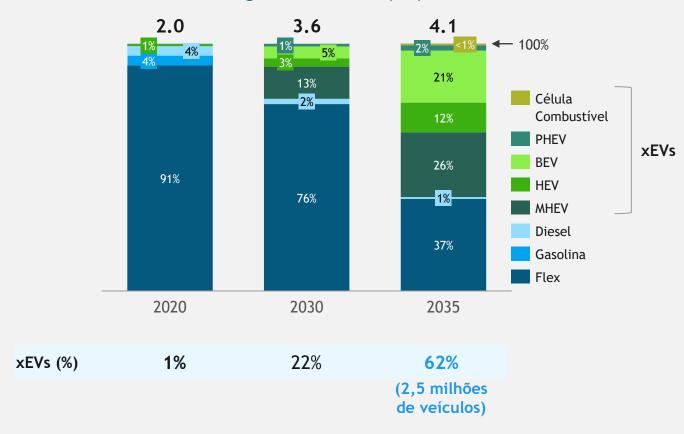
Nota: Veículos leves, incluindo veículos de passageiros e veículos comerciais leves; xEVs - veículos eletrificados; PHEV - Plug-in Hybrid Electric Vehicle; BEV - Batery Electric Vehicle; HEV - Hybrid Electric Vehicle; MHEV - Mild Hybrid Electric Vehicle. Fonte: IHS Markit: Anfavea: Sindipecas: Análise BCG

2. Cenário de Convergência global

Neste cenário, evolução tecnológica e ritmo de adoção permite que xEVs ganhem escala no Brasil no período, atingindo em 2035 níveis de penetração por segmento similares aos da Europa em 2030

Brasil se aproxima de níveis de eletrificação de mercados mais avançados, montadoras seguem estratégias globais de eletrificação

2. Cenário de Convergência global


Neste cenário, evolução tecnológica e ritmo de adoção permite que xEVs ganhem escala no Brasil no período, atingindo em 2035 níveis de penetração por segmento similares aos da Europa em 2030

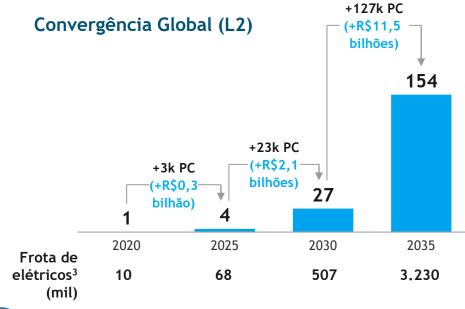
Brasil se aproxima de níveis de eletrificação de mercados mais avançados, montadoras seguem estratégias globais de eletrificação

Mix de vendas anual - milhões de veículos

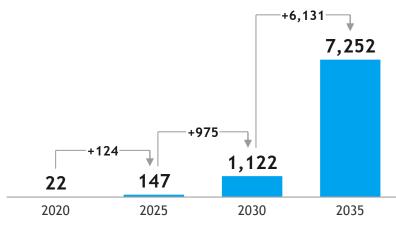
ESTIMATIVAS

Convergência Global (L2)

Nota: Veículos leves, incluindo veículos de passageiros e veículos comerciais leves; xEVs - veículos eletrificados; PHEV - Plug-in Hybrid Electric Vehicle; BEV - Batery Electric Vehicle; HEV - Hybrid Electric Vehicle; MHEV - Mild Hybrid Electric Vehicle. Fonte: IHS Markit: Anfavea: Sindipecas: Análise BCG

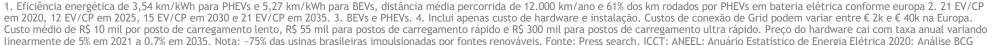


Cenário de convergência aponta necessidade de instalação de 150 mil carregadores e investimentos de R\$ 14 bilhões até 2035


Estimativa de postos de carregamento (PC) necessários para atender frota de xEVs¹

Estimativa de impacto no consumo de eletricidade² (GWh)/ano

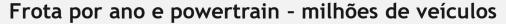
Estimativas

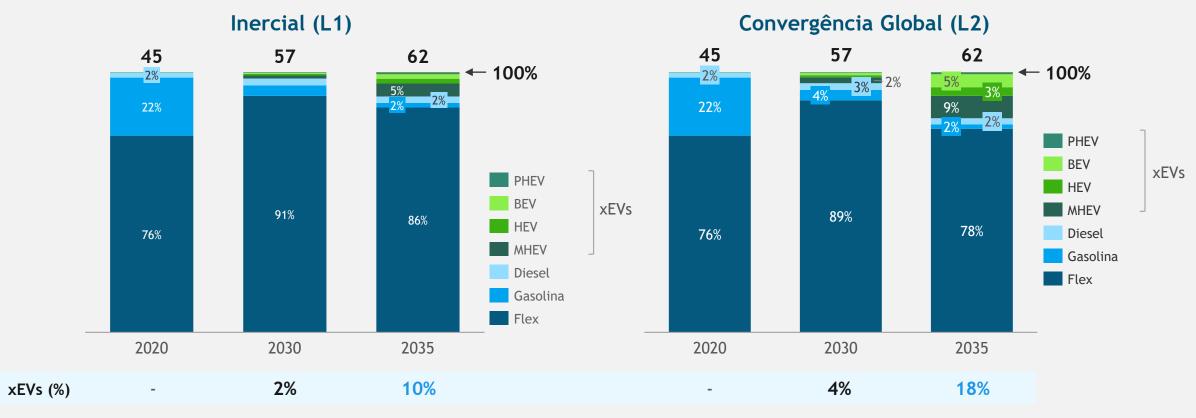

Total no período R\$ 14 bilhões⁴

em investimentos em pontos de carregamento dada penetração BEVs/PHEVs no cenário de convergência

~1.5% da energia elétrica consumida pelo país (2019)

representa a demanda de energia elétrica para suprir BEVs/PHEVs em 2035 no cenário de convergência





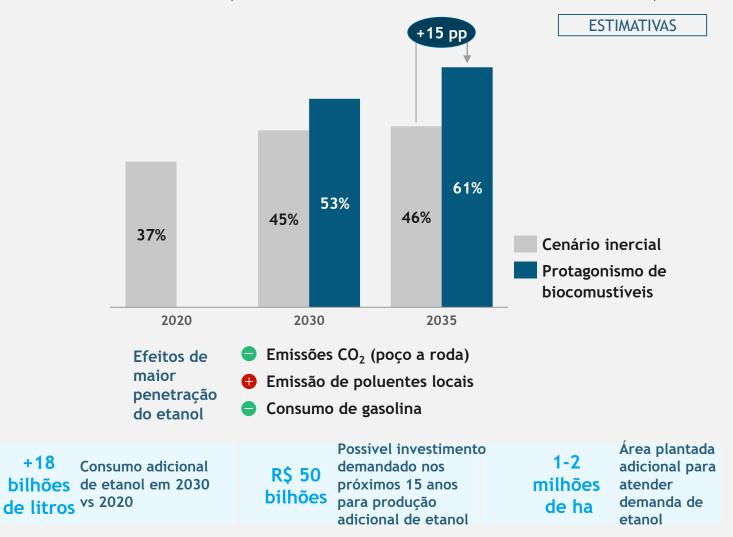
Frota circulante | Veículos flex ainda devem representar maior parte da frota em 2035, assumindo taxa de renovação atual

ESTIMATIVAS

3. Protagonismo de biocombustíveis

Neste cenário, etanol ganha mais protagonismo como caminho para descarbonização, viabilizado por regulação favorável, frota flex e ampla infra-estrutura de produção e distribuição

Cenário assume como premissa aumento de +15 p.p. do etanol no mix de combustíveis, atingindo 61% do consumo, e para fins de comparação, penetração de xEV em vendas igual ao cenário inercial



3. Protagonismo de biocombustíveis

Neste cenário, etanol ganha mais protagonismo como caminho para descarbonização, viabilizado por regulação favorável, frota flex e ampla infra-estrutura de produção e distribuição

Cenário assume como premissa aumento de +15 p.p. do etanol no mix de combustíveis, atingindo 61% do consumo, e para fins de comparação, penetração de xEV em vendas igual ao cenário inercial

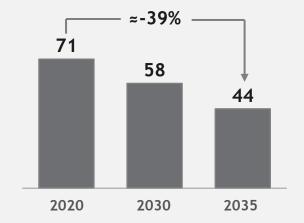
Veículos leves (% etanol / total combustível)

CO₂ - veículos leves | Maior uso do etanol pode acelerar descarbonização a curto-médio prazo ao reduzir a emissão da frota circulante

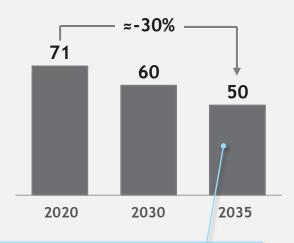
Emissões de CO₂ - milhões de toneladas CO₂ / ano

ESTIMATIVAS

Nota: Assume crescimento de 37% na frota circulante entre 2020 e 2035; fatores de emissão (Kg/l escapamento e poço a roda, resp.) de 2.01 e 2.04 p/ gasolina, 1.2 e 0.4 para etanol e 2.4 e 2.7 para diesel. Apenas veículos de passageiros. Fonte: IHS Markit: Anfavea: Sindipecas: CBCS: Análise BCG


Emissões poluentes locais - veículos leves | Redução significativa em todos os cenários devido à renovação da frota

ESTIMATIVAS


Emissões de NMOG + NOx - milhares de toneladas / ano

Convergência Global (L2)

Protagonismo de biocombustíveis (L3)

Cenário com menor redução na questão de poluentes locais

A interação das forças pode moldar diferentes rotas de descarbonização no Brasil nos próximos 10-15 anos

Inercial

Convergência global

Protagonismo de biocombustíveis

1. Cenário Inercial

Neste cenário, novas tecnologias de motorização (NEVs) ficam voltadas para aplicações específicas e para atender demandas de grandes clientes

Motor a diesel permanece dominante

1. Cenário Inercial

Neste cenário, novas tecnologias de motorização (NEVs) ficam voltadas para aplicações específicas e para atender demandas de grandes clientes

Motor a diesel permanece dominante

Mix de vendas anual - milhares de veículos

ESTIMATIVAS

Nota: Inclui caminhões médios e pesados e ônibus; NEV - New Energy Vehicle; BEV - Batery Flectric Vehicle

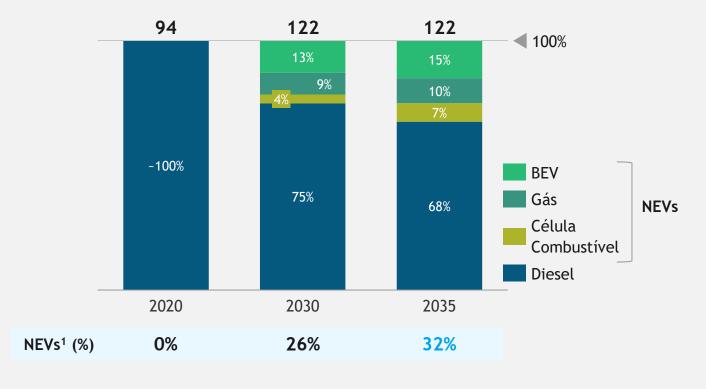
Fonte: IHS Markit; Anfavea; Sindipeças; Análise BCG

2. Cenário de Convergência Global

Neste cenário, a evolução tecnológica e ritmo de adoção permitem que novas tecnologias ganhem escala no Brasil, atingindo em 2035 níveis de penetração similares aos da Europa em 2030

Brasil se aproxima de níveis de novas motorizações de mercados mais avançados, e montadoras seguem estratégias globais para NEVs

2. Cenário de Convergência Global


Neste cenário, a evolução tecnológica e ritmo de adoção permitem que novas tecnologias ganhem escala no Brasil, atingindo em 2035 níveis de penetração similares aos da Europa em 2030

Brasil se aproxima de níveis de novas motorizações de mercados mais avançados, e montadoras seguem estratégias globais para NEVs

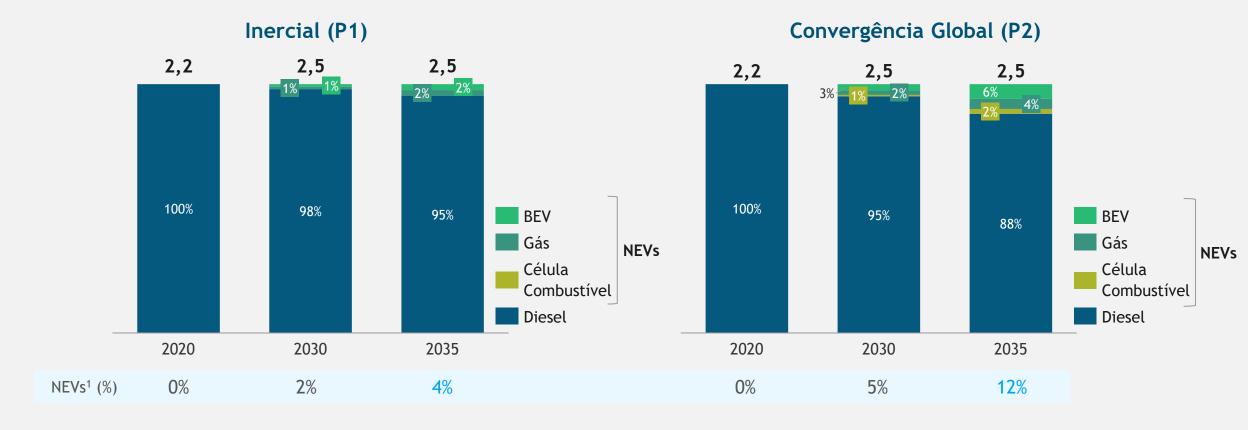
Mix de vendas anual - milhares de veículos

ESTIMATIVAS

Convergência Global (P2)

Nota: Inclui caminhões médios e pesados e ônibus; NEV - New Energy Vehicle; BEV - Batery Electric Vehicle

Fonte: IHS Markit; Anfavea; Sindipeças; Análise BCG


Frota - veículos pesados | Motor a combustão interna movido a diesel deve continuar dominante na frota no período, assumindo taxa de renovação atual

Frota por ano e motorização - milhões de veículos

Nota: Inclui caminhões médios e pesados e ônibus; NEV - New Energy Vehicle; BEV - Batery Electric Vehicle

Fonte: IHS Markit; Anfavea; Sindipeças; Análise BCG

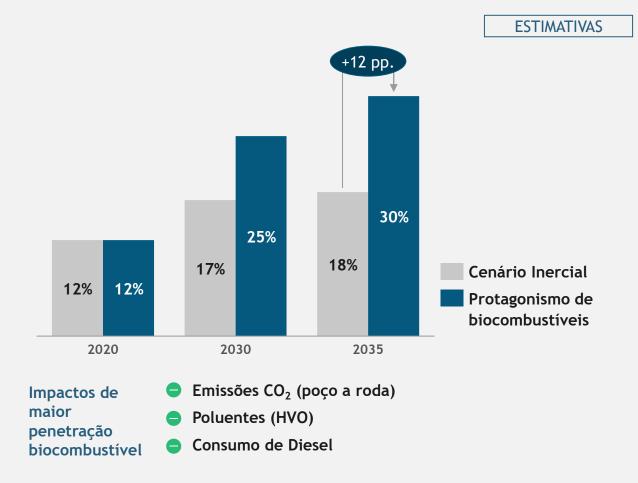
ESTIMATIVAS

3. Protagonismo de biocombustíveis

Neste cenário, Biodiesel/HVO e outros biocombustíveis ganham protagonismo como caminho para descarbonização, viabilizados por regulação favorável e investimentos

Cenário assume como premissa, aumento de relevância do HVO para 15% do mix, vs. 3% no cenário inercial (e 15% de biodiesel)...

... e para fins de comparação, penetração de NEV em novas vendas igual ao inercial

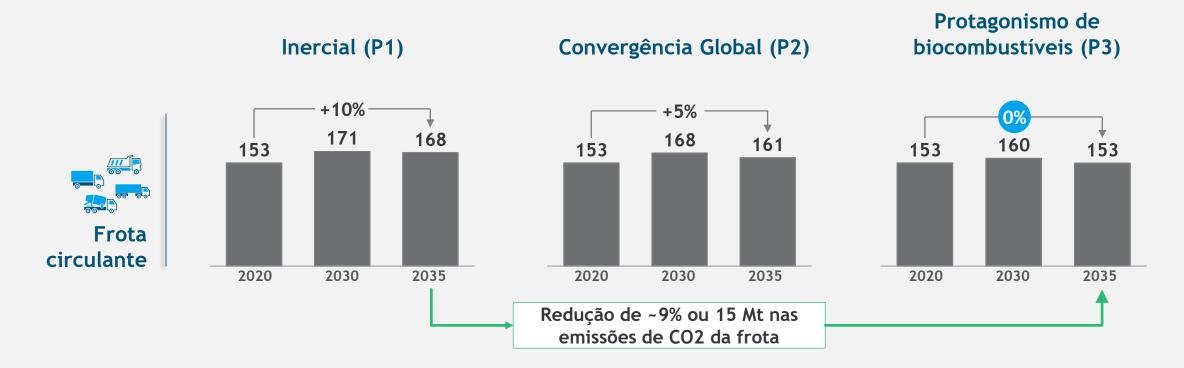

3. Protagonismo de biocombustíveis

Neste cenário, Biodiesel/HVO e outros biocombustíveis ganham protagonismo como caminho para descarbonização, viabilizados por regulação favorável e investimentos

Cenário assume como premissa, aumento de relevância do HVO para 15% do mix, vs. 3% no cenário inercial (e 15% de biodiesel)...

... e para fins de comparação, penetração de NEV em novas vendas igual ao inercial

Veículos pesados (% biocombustíveis / combustíveis)

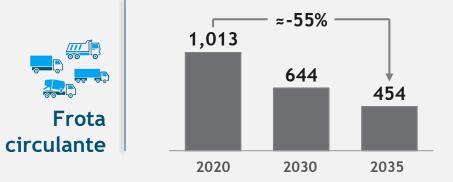


CO₂ - veículos pesados | Maior aplicação de biocombustíveis pode auxiliar redução de CO₂ ao reduzir a emissão da frota circulante

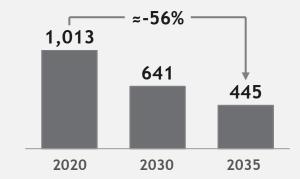
Emissões de CO₂ - milhões de toneladas CO₂ / ano, visão poço à roda¹

ESTIMATIVAS

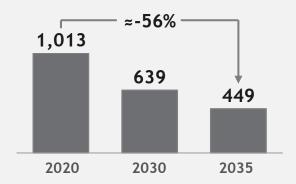
^{1.} Considera captura de carbono. Nota: Crescimento da frota nova de 12% entre 2019 e 35, e de 14% da frota circulante entre 2020 e 35; Fatores de emissão (Kg/l escapamento e poço a roda, resp.) de 2.01 e 2.04 para gasolina, 1.2 e 0.4 para etanol, 2.4 e 2.7 para diesel, 1.4 e 0.7 para HVO e 2.0 e 2.3 para NG. Cons. Caminhões médios e pesados somente.



Emissões poluentes locais - veículos pesados | Redução significativa em todos os cenários dado renovação da frota


ESTIMATIVAS

Emissões de NOx - milhares de toneladas / ano



Convergência Global (P2)

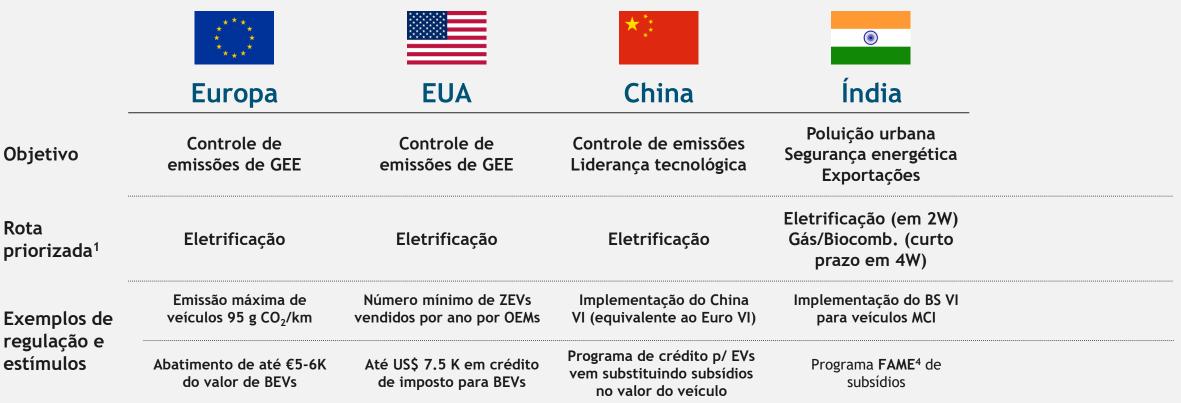
Protagonismo de biocombustíveis (P3)

Considerações finais 1 - Impactos no setor automotivo

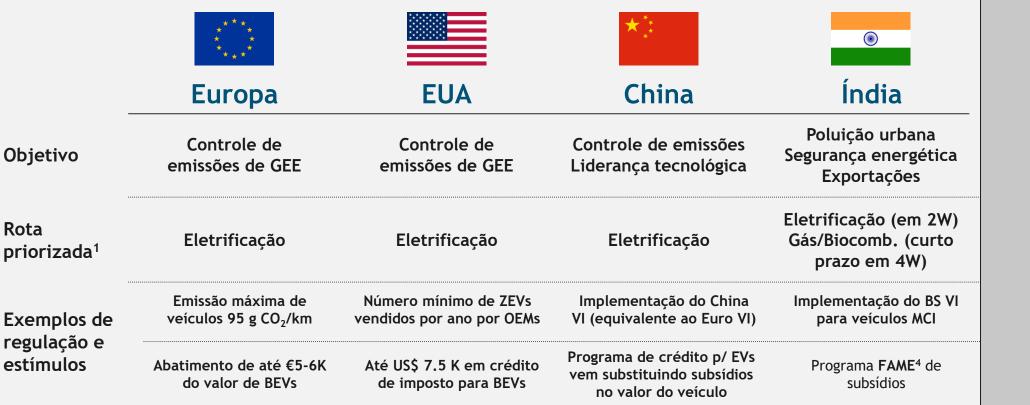
- 1 Impactos no setor automotivo
- 2 Estímulos Governamentais

- 1 Impactos no setor automotivo
- 2 Estímulos Governamentais
- 3 Reflexos sobre os combustíveis

- 1 Impactos no setor automotivo
- 2 Estímulos Governamentais
- 3 Reflexos sobre os combustíveis
- 4 Investimentos em energia e infraestrutura


- 1 Impactos no setor automotivo
- 2 Estímulos Governamentais
- 3 Reflexos sobre os combustíveis
- 4 Investimentos em energia e infraestrutura
- 5 Redução de emissão de CO2 e de poluentes

- 1 Impactos no setor automotivo
- 2 Estímulos Governamentais
- 3 Reflexos sobre os combustíveis
- 4 Investimentos em energia e infraestrutura
- 5 Redução de emissão de CO2 e de poluentes
- 6 Oportunidade única: avalanche de investimentos no Brasil



Políticas públicas

Políticas públicas

Rota

Brasil

